Research in the Field

Behavioral Ecology of Beluga Whales

Mystic Aquarium has partnered with Arctic Watch Wilderness Lodge on Cunningham Inlet in Nunavut, Canada, to help protect the wild beluga whale population through research and education. A world-class beluga observation site located 500 miles north of the Arctic Circle, late Mystic Aquarium Scientist and Research Director Dr. David St. Aubin conducted research studies on belugas in Cunningham Inlet for many years and this is the first time people are studying this whale population since 1999. Since that time, the climate has changed dramatically, allowing increased ship traffic in the Northwest Passage. No one knows how this affects the belugas and if the beluga population is growing, shrinking or stabilizing.

In July 2012 and 2013 Mystic Aquarium’s scientists conducted research at Cunningham Inlet to look at the feasibility for long term beluga studies in this area, initiate observations and collect data on the hundreds of wild belugas that make Cunningham Inlet their home for six weeks each year.

Mystic Aquarium scientists have also conducted research on wild belugas in Point Lay and Bristol Bay, Alaska, in order to determine the environment’s effect on beluga health and compare health information with endangered beluga populations worldwide.

Health Assessment of Beluga Whales in the Chukchi Sea and Bristol Bay, AK

Climate change, pollution, offshore oil and gas exploration, and other human factors are challenges for whales in the wild and pose potential threats to Alaska’s beluga populations. In the fall of 2008, beluga whales in Cook Inlet were listed as critically endangered. This project aims to establish baseline health measurements of wild belugas with studies of live capture-released belugas in Point Lay and Bristol Bay, AK via satellite tracking, blood sampling, and sample collection. Moreover, samples and natural history data are collected from whales taken during native subsistence hunts. Establishing baseline health measures of belugas in the wild before further oil and gas exploration and development, impact of climate change, etc. is critical. Usually it is too late e.g. after an oil spill to understand impacts since baseline levels of contaminants, pathogens, etc. were not available. This study enables us to gather information on belugas over time and reveal health status of belugas under different environmental pressures. Data can eventually be compared with information on the endangered Cook Inlet beluga population. Human health impacts are also studied given that native peoples consume the beluga for food. For the first time ever, in collaboration with National Geographic, a critter cam (camera placed on a beluga) was placed on a wild beluga to get footage of beluga behavior.

Through this project an educational exchange program was established in which high school students from Point Lay, AK and Mashantucket tribal students from southeastern CT assist the scientists in the field with collection of data and then travel to Mystic Aquarium to participate hands-on with the analysis, participate in the Aquarium’s other educational programs and spend time on the Mashantucket Reservation.

This project seeks to further investigate current health status in Chukchi Sea and Bristol Bay belugas and initiates steps to study how stressors impact beluga health; furthermore, the project develops baseline data for future studies, and broadens public awareness of current threats for belugas in the wild.

Snapping Turtle Behavior and Health Assessment

Snapping Turtle Health Assessments: Partnering with National Geographic, the Tributary Mill Conservancy in Old Lyme, CT and Dr. Tobias Landberg, Acadia University, Mystic Aquarium scientists are studying the behavior of snapping turtles in different types of habitats by deploying crittercams or small cameras on their backs. Before release, measurements are taken on each turtle and the blood sampled for health assessment. Immune function and contaminant levels are being investigated. The research is to help protect the snapping turtle and their habitat as well as provide information that may impact human health.

Ecology and Evolution of Influenza Virus in the Marine Environment in collaboration with colleagues at MIT

Influenza is a globally important pathogen leading to significant morbidity and mortality which has implications for both wildlife and human health. The coastal environment provides an interface between marine and terrestrial habitats where avian reservoirs of influenza collide (sea ducks, gulls, and shorebirds) and overlap spatio-temporally with marine mammals, providing an opportunity for interspecies transmission of influenza virus. The repeated infections in marine mammals during the last 30-40 years in New England and the associated sampling and laboratory studies have been the foundation of our understanding of influenza in marine mammals. However, the infection and/or exposure to influenza viruses in marine mammal populations outside of these mass mortalities and in other parts of the world remain limited. Therefore, this project seeks to develop collaborations with researchers and rehabilitation networks in order to collaborate in sample collection and laboratory analysis that will work on a continuous, multiyear, and long-term (5-10 year plus) project to assess the role of influenza exposure to marine mammal health.

Seafloor Habitat Recovery Monitoring Project (SHRMP)

Understanding the role that marine protected areas can play in both conservation and sustainable use of marine biological diversity is a key element for managing fisheries and other human uses of the ocean. While much information is available for tropical coral reefs, kelp forests and similar shallow water habitats around the globe, fewer studies have been conducted in deep water outer continental shelf environments, where most commercial fishing activities take place. Mystic Aquarium scientists and collaborators carried out a 12 year study of the recovery of seafloor communities and patterns of habitat use by fishes at Stellwagen Bank National Marine Sanctuary in the Gulf of Maine. Interestingly, rocky habitats have to yet to fully recover from fishing disturbance, even after 12 years. While some species of economic interest and ecological importance depend on rocky habitat for survival, especially when young, the need to conserve such places remains steeped in controversy. The results of this work and related studies provide critical pieces of information to make decisions regarding habitat protection.

Behavior Webs of Piscivores

The behavioral ecology of piscivores (fish-eating fish) is being studied at Gray’s Reef National Marine Sanctuary to better understand the interactions that link predators and prey. Previous studies from Mystic Aquarium scientists and colleagues found that foraging by fish predators in the water column actually enhanced feeding opportunities for fish predators that hunt on or near reefs. For example, groups of greater amberjack, Spanish mackerel, and great barracuda were observed using coordinated hunting behaviors, both within and among species, when preying upon mixed schools of juvenile tomtate (a small bottom fish) and round scad (locally known as “cigar minnows”). These hunting behaviors drove schools of small fish closer to reef habitats on the bottom and created feeding opportunities for bottom-dwelling scamp and gag grouper. The scientists reasoned that rather than competing for food resources, the behaviors of these fishes may result in more feeding opportunities for all. The current project expands on these initial observations and combines several methods of observing fish behavior and distribution to get an improved “picture” of the interactions between species and to understand if such interactions are different inside and outside a protected area. The primary goal of this work is to determine the importance that these types of behavioral interactions have in local food webs.

Deep Sea Corals

Management and effective policy making for deep-sea corals in both national and international waters is hindered by fragmented knowledge of patterns in the distribution and abundance. To date, most deep-sea coral presence data has been from research and exploration programs directed at other target species. In the past decade plus, occupied submersibles and remotely operated vehicles have been directed to investigate locations chosen specifically for the high probability of finding deep sea corals. Despite this work, we still don’t know the extent of corals, or most deep-sea species, around seamounts, throughout canyons, and in other precipitous features found on outer continental shelves and in the deep ocean. This knowledge is critical for considering how to balance human activities such as fishing and minerals exploration with conservation. Research projects have assessed the utility of AUV technology to conduct coarse-grained surveys for management, have focused on mapping the distribution of deep sea corals in the northern Gulf of Maine, an area that probably is the last refugia for such animals in the region after a century of fishing with mobile gear such as trawls, and submarine canyons and seamounts here off the northeast US which led to the first National Monument in the Atlantic Ocean in 2016.

Ecological mapping of Long Island Sound

Understanding how natural resources are distributed is critical for sound management. The State of Connecticut, the State of New York, and the U.S. Environmental Protection (USEPA) agency have multiple mandates to preserve and protect coastal and estuarine environments and water quality of Long Island Sound, while balancing competing human and energy needs with protection and restoration of essential ecological function and habitats. Maps of the ecological resources in the Sound will greatly aid in addressing management needs. A multi-year ecological mapping program has been implemented to produce such maps. A pilot project focused on the Stratford Shoals region, to develop field and analytical approaches to produce maps that are both use-friendly and user-useful.